
Development of a C/C++ Interface for a
Balancing Arm System

Nima Soroush, Kiran Roy

June 19, 2013

Supervised by Dr. Guillaume Ducard



Abstract

We present the design of an Interface and control strategies on the frame-
work for the actual implementation of one degree balancing arm system. In
our framework, hardware and software are integrated together to realize the
hardware-in-the-loop simulation. Real-time hardware-in-the-loop simula-
tion is one of the most effective methods for the verification of the overall
control performance.

Balancing arm system is a pre-designed one degree balancing arm sys-
tem, connected over sensor, micro controller and simulator. Simulator is a
software, designed and programmed on C++ interface.The simulator calcu-
lates and simulates the arm movement and also trace important behaviours
of the one degree balancing arm Ssstem.

The idea is to satisfy following two main concepts:

• To observe the system behaviour in GUI (without connecting between
simulator and system)

• To trace the behaviour of the system in the real-time when simulator
and the system are connected.

2



Contents

1 Introduction 4
1.1 Project Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Model View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Working Principle of propeller . . . . . . . . . . . . . . . . . . . 6
1.4 Computation of θ . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Technology 8
2.1 User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Serial Communication 10
3.1 UART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Asynchronous Serial Transmission . . . . . . . . . . . . . . . . . 12
3.3 Code Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Communication Thread . . . . . . . . . . . . . . . . . . . . . . . 14

4 Hardware in the Loop Simulation 16
4.1 Design of HIL simulation framework . . . . . . . . . . . . . . . . 16
4.2 Module communication . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Different Simulation Modes . . . . . . . . . . . . . . . . . . . . 19

5 Conclusion and Future Work 23

3



Chapter 1

Introduction

Our supervisor Dr. Guillaume Ducard has constructed the Balancing Arm System,
shown in figure1. This is utilized for receiving of real time data and compare those
data to a virtual model. Our missions are to track the angle with respect to thrust
and replicate as well into the graph.
This system is designed to show the difference between real-time simulation with
virtual simulation of one degree moving arm.

figure1: Balancing Arm System

The given one degree balancing arm system has three parts - base, sidebar and
an arm. The sidebar is at one end of the base and the sidebar can be rotated along
its own axis. At the top of the sidebar, there is the aluminium arm. At the end
of the arm, there is a plastic propeller. The propeller helps the arm to actuate. At
This balancing arm system is connected with a 8 pin micro-controller PIC Board
The angle of the sidebar and arm is measured by a linear circular potentiometer

4



which is at the joint of the sidebar and the arm. The speed of the propeller is
controlled by a dedicated motor controller. The communication between our GUI
and the PIC board is established over usb serial communicator.

1.1 Project Goal
The potentiometer takes the voltage in the range of 0-5v and send to PIC board. In
the board there is analogue to digital converter and converts the 0-5v into 0-1023.
The PIC board then sends the value to the GUI and we mapped that value in a time
vs θ graph. The motor-controller also sends the PWM (pulse with modulation)
signal to the PIC board and the PIC board then convert that signal and sends that
to the GUI.

• To develop framework for:

the acquisition of the measurement data coming from the balancing arm
system over a serial port

to animate a 3D simulator of the system.

• Implement an user Interface where some physical data are being displayed
on the screen such as the arm angle, the propeller speed and thrust.

• One object is to perform hardware in-the-loop simulation, meaning that the
C++ simulator will be used to test some code implemented on an external
micro controller.

• Document the architecture of the overall framework/interface.

Here is the graphics view of the real system.

5



1.2 Model View

figure2: Balancing Arm System

• AB = Sidebar

• BC = Base

• OH = Arm (L)

• FH = Thrust of the propeller

• g = gravity (9.81 m/s2)

• θ = Angle

1.3 Working Principle of propeller
The propeller "propels" the bar or makes it move. It does this in much the same
way that the air-plane’s wing produces lift, only instead of being pushed forward
through the air, it is spun in circles through the air.
A helicopter flies by means of the thrust that is created by the rotation of the blades
of a main rotor. As the blades rotate, an airflow is created over them, resulting in
lift. This raises the helicopter.
Thrust is produced by the expulsion of a reaction mass. In an optimum situa-
tion (see below), thrust equals the product of the mass expelled from the propeller
force in unit time (the propellant mass flow rate) and the velocity .
If F is the thrust, mp the propellant flow rate, and V e the effective velocity, then F
= mp V e

6



In our project the thrust is obtained by rotation of the propeller according to F
= µ.Ω2, where Ω2 = propeller speed in rad/s and µ = lifting coefficient.

1.4 Computation of θ
θ is the function of Jz, L, FH , where

• Jz = moment of inertia (m2kg)

• L = length of the arm

• FH = propeller thrust

• ~OG = ~OH = L
2

To compute the angle θ, we need to compute θ̈ and θ̇.

θ̇ and θ̈ are first derivative and second derivative of angle θ respectively.

From the fundamental theorem of dynamics for system in rotation - we derived
the following equations

J~z θ̈ = ~OG ∧ ~mg+ ~OH ∧ ~FH
J~z θ̈ = - ~OG.mgsinθ + L. ~FH
∴ θ̈ = [L ~FH− ~OG.mgsinθ]

Jz

θ̈(k) =[θ̇(k) - θ̇(k-1)]/∆T [k= time]
θ̈(k) = [θ(k) - θ(k-1) - θ(k-1) - θ(k-2)]/∆T 2

θ̈(k) = [θ(k) - 2θ(k-1) + θ(k-2)]/(∆T )2

θ̇(k) = θ̈(k)∆T + θ̇(k-1)
θ(k) = θ̇(k)∆T + θ(k-1)

7



Chapter 2

Technology

The user interface is designed with C++ language over visual studio on windows
form application. The simulation designed on OpenGL with C++ language.
The technology behind the user interface divided into two parts. First part that
is to implement the propeller equation done with C++ language using Microsoft
Visual Studio and second part corresponds to arm simulator based on OpenGL
basic C++ language.
For the first part we used the windows form application and add chart component.
The chart component gives the diagram in graph form of angle (θ) vs thrust of
propeller.
For the 3D arm simulator we used OpenGL component for the visual studio that
is called OpenCS . For calculation of angle (θ), we send the value to OpenGL
component and we render the arm position.
The 3D arm drawing with the angle vs time and thrust vs time graph

2.1 User Interface
The GUI has tow parts. Left is showing the virtual model of our balancing arm
system and right is showing the graphs of Angle vs Time and Thrust vs Time.
In our UI,we have file, tools, mode, setting, helps.
In file option, user will able to save the graphs in .png format and also able to open
file. In mode option We have different modes of simulation(Described in chapter
4). In tools, we have start, stop, pause, restart mode. In help, there is details about
the UI software.

8



Below is the picture of our implemented GUI.

(a) GUI (b) Graphs

9



Chapter 3

Serial Communication

The word serial means "one after the other". Serial data transfer means when we
transfer data one bit at a time, one right after the other. Information is passed
back and forth between the computer and the other device, essentially, setting a
pin high or low.

Serial communication is often used either to control or to receive data from an
embedded microprocessor. Serial communication is a form of I/O in which the
bits of a byte is transferred one after the other in a timed sequence on a single
wire.

Serial communication enables different equipments to communicate with their
outside world. Data bits are sent in a serial way over a single line. A personal com-
puter has a serial port known as communication port or COM Port used to connect
a modem(for example) or any other device, there could be more then one COM
Port in a PC. Serial ports are controlled by a special chip called UART (Universal
Asynchronous Receiver Transmitter). Different applications use different pins on
the serial port and this basically depend of the functions required.

10



figure4: Serial Data Communication

The serial communication architecture of our project

figure5: Thread and Serial Communication

In our project, the serial communicator depends on

figure6: Serial Communicator

11



3.1 UART
The Universal Asynchronous Receiver/Transmitter (UART) controller is the key
component of the serial communications. The UART takes bytes of data and
transmits the individual bits in a sequential fashion. At the destination, a second
UART re-assembles the bits into complete bytes. Serial transmission is commonly
used with modems and for non -networked communication between computers,
terminals and other devices.

3.2 Asynchronous Serial Transmission
Asynchronous transmission allows data to be transmitted without the sender hav-
ing to send a clock signal to the receiver. Instead, the sender and receiver must
agree on timing parameters in advance and special bits are added to each word
which are used to synchronize the sending and receiving units.

Here is how the Data packet is created and how to make the communication
shown in figure 7

figure7: Serial Communicator

12



The following figure shows thread function works with serial communication

figure8: Thread to Serial Communicator

3.3 Code Architecture
The below is the graphical representation of code architecture. we have two main
package named as SerialCommunication and MovingArm.

The architecture of serial communication is bellow.

13



figure9: Code Architecture

The whole communication is designed by Dr. Guillaume Ducard The following
figure depicts the creation of threads and threa-loop

3.4 Communication Thread

figure10: Generation of Thread Communication

14



figure11: Connection of Thread Communication

The serial communication package is connected with MovingArm package. Be-
low is the graphical representation of MovingArm Package

figure12: MovingArm Connected with SerialCommunication

15



Chapter 4

Hardware in the Loop Simulation

The purpose of Hardware in the Loop Simulation(HIL) simulation is to provide
an effective platform for developing and testing real-time embedded systems.
HIL simulation adds the complexity of the plant under control to the test platform.
The complexity of the plant under control is included in test and development by
adding a mathematical representation of all related dynamic systems. These math-
ematical representations are referred to as the "plant simulation."
An HIL simulation also include electrical emulation of sensors and actuators.
These electrical emulations act as the interface between the plant simulation and
the embedded system under test. The value of each electrically emulated sensor is
controlled by the plant simulation and is read by the embedded system under test.

This framework includes the following three modules (1) onboard hardware mod-
ule; (2) control module; and (3) software module.

4.1 Design of HIL simulation framework
The framework of hardware-in-the-loop simulation is depicted in figure 10. This
framework includes: (a) an onboard hardware module that activates the model
actuators and output sensors; (b) a control module for executing automatic control
algorithms; (c) a interface module for generating task commands and monitoring
the model through data view and 3D view interfaces; and (d) a software module
for integrating all the previous three modules to perform real-time hardware-in-
the-loop simulation.

16



figure13: Framework of the HIL simulation

17



figure14: Structure of Software System

4.2 Module communication
The project consists of two main parts. Hardware module and software module.
The software module has also two main parts including Hardware control software
and Interface Software. Here we describe the communication of hardware control
software and interface software. The main function which is actually invoked by
form1.h works as communication manager between serial communication and the
graphics interface.The graphics interface is invoked by OpenGL.h. The OpenGL
consists of serial communication and invokes two other methods - arm simulator
and arm rotation. The arm simulator consists the methods of mathematical for-
mula that calculates the angle and thrust(see Computation of θ). It invokes also
the Mode0 where PC simulator runs on its own and the user can control the thrust
and the angle θ. To control the thrust, user has two predefined control gate named
as Cascade Controller and Leadlag Controller, where the user can put value ofK1,
K2 or A1, A2, A3,A4 and the controller function will calculate the angle θ. The
arm rotation moves the position of arm according to the angel θ and thrust.

18



4.3 Different Simulation Modes
We have four different modes. MODE0,MODE1,MODE2,MODE3

• MODE0 - containing two different concepts. In first concept that is called
Open loop Thrust Input The PC simulator runs on its own. User can
control the thrust by changing the sliding bar. The thrust that is generated
by the slider will send to function of equation for calculating the theta by
that thrust(See Computation of θ). The calculated thrust is sent to OpenGL
rendering function to be shown in GUI.

figure15: Open loop thrust input

Second concept is Closed-loop with local controller has two predefined
control gate named as Cascade Controller and Leadlag Controller, where
the user can put value ofK1,K2 orA1,A2,A3,A4 that will be define by user
and will be send to the function of equation of one of these two controller
and the controller function will calculate the desired angle between moving
arm and the sidebar.

figure16: Closed loop with local controller

19



The desired angle is set by sliding bar in user interface and this desired theta
is calculated by one of the Cascade or Leadlag 1controller depend on user
selection. The equation for Cascade and Leadlag controller is shown below.

Equation for Cascade controller
θ̈d = Double derivative Desired Theta
θd = Desired Theta
θC = Current theta
θ̇l = last derivative of theta
K = Constant

θ̈d = ((θd - θC) ∗ K1)-θ̇l))∗ K2

Equation for Leadlag controller
Leadlag controller is a recursive method for calculating the θ̈d. Let ’t’ be
time for each step of calculation of θ̈d and ’e’ be the error function for cal-
culating the θ

θ̈d = (A1 ∗ θ̈d in (t-1))+ (A2 ∗ θ̈d in (t-2))+ (b1∗e)+ (b2∗e(t−1))+(b3∗e(t−3)))

The θ̈d and θd are set by slider in UI, are sent to function of equation of
thrust that is needed to reach for θd

This equation to calculate the Thrust FH is shown bellow

FH = [J~z∗θ̈+ ~OG∗m∗g∗sin θ]
L

The arm rotation moves the position of arm according to the angel that is
given by slider and thrust.In this case we can observe that arm will move to
exact degree and the thrust will be shown in the plot.

MODE1 - Real hardware in the loopIn this mode, The PC sends the sen-
sor data to the Board that is current angle of arm (θ) and ˙theta. The board
replies with motor commands (thrust) that is calculated by θ and ˙theta and
PC will receive this thrust and in GUI, the theta and thrust will be displayed.
This loop will continue frequently by this mode which treated by the PC
simulator and displayed in the 3D animation. The simulation for this mode
shown bellow

20



figure17: Mode1- Real Hardware in the loop

• MODE2 - Real-angle display mode- In this mode, the 3D GUI is only used
to display the real angle of the balancing arm. The PC simulator makes
the connection with PIC board, the board ask for the angle(the position of
the arm) from the potentiometer. The potentiometer send the PWM signal
(pulse with the modulation signal)in the range from 0 to 5 volt that is corre-
spond the angle between arm and sidebar. When the PIC board receives the
voltage from the potentiometer, it converts into digital value and the value
to the software module in streams of bytes (0 to 1023 byte) through serial
communicator and in the simulator by angle sensor calibration that is shown
as bellow the exact position of arm is then calculated and shown in the GUI.
So we can see that when we move the arm the exact movement and position
will be shown in the GUI and the plot.

(c) Real angle display mode (d) Calibration of angle sensor

• MODE3 - Real PC control In this mode, the PC will send the desired thrust
to the board through serial communicator and board will transfer this value
to PWM signal and will send it to motor controller. The motor controller by
receiving the signal start to turn the propeller and this cause the arm start to
move. The potentiometer will measure the angle between the moving arm
and the column and will send this the data as PWM signal to the board, and
finally board send the angle in stream of byte to PC. And simulator convert
this value to real angle in radian and will display the arm movement, theta

21



and thrust in GUI and plot. Mode3 follow same steps as mode1 with this
different that in mode1 there is no motor controller and movement of arm
but in mode3 the motor controller and real arm movement will be replaced.
The steps are shown below in the figure 18

figure19:Real angle display mode

22



Chapter 5

Conclusion and Future Work

We have presented here a design procedure of a hardware-in-the-loop simulation
system for our Balancing Arm System that is designed by our supervisor Dr. Guil-
laume Ducard. We have designed a Graphical User Interface for that system and
also implemented four important mode to make the simulation. Simulation results
are obtained for MODE0 and MODE2, compared to those of the actual system.
The proposed hardware-in-the-loop simulation system is capable of accurately
and efficiently predicting the real system situations and useful tool for us in edu-
cation research. The framework of MODE1 and MODE3 has already been done.
We need to implement that and test with the real system.

Acknowledgement
Most sincere thanks to our supervisor Dr. Guillaume Ducard for his help, guidance
and encouragement. We are grateful to got the opportunity to work with him and
his guidance led us to accomplish this project.

23



Bibliography

[1] http://msdn.microsoft.com/en-us/vstudio/hh386302.aspx

[2] http://www.opengl.org/documentation/
http://nehe.gamedev.net/

[3] http://www.mikroe.com/pic/development-boards/

[4] http://www.ftdichip.com/Drivers/D2XX.htm

[5] Hardware in-the-loop-simulation

24


